Debinding of Yttria-Stabilised Zirconia/Bimodal Stainless Steel 316L Bi-Materials Produced through Two-Component Micro-Powder Injection Moulding

Author:

Basir Al1,Sulong Abu Bakar1ORCID,Muhamad Norhamidi1,Juri Afifah Z.1,Jamadon Nashrah Hani1ORCID,Foudzi Farhana Mohd1,Radzuan Nabilah Afiqah Mohd1ORCID

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

Abstract

The fabrication of bi-material micro-components via two-component micro-powder injection moulding (2C-µPIM) from 3 mol% yttria-stabilised zirconia (3YSZ) and micro/nano bimodal stainless steel 316L (SS 316L) powders has received insufficient attention. Apart from this, retaining the bonding between ceramic and metal at different processing stages of 2C-µPIM is challenging. This study investigated the solvent and thermal debinding mechanisms of green bi-material micro-parts of 3YSZ and bimodal SS 316L without collapsing the ceramic/metal joining. In this research, feedstocks were prepared by integrating the powders individually with palm stearin and low-density polyethylene binders. The results demonstrated that during the solvent debinding process, the palm stearin removal rate in the bi-materials composed of 3YSZ and bimodally configured SS 316L feedstocks intensified with an increase in temperature. The establishment of interconnected pores in the solvent-debound components facilitated the thermal debinding process, which removed 99% of the binder system. Following sintering, the debound bi-materials exhibited a relative density of 95.3%. According to a study of the microstructures using field emission scanning electron microscopy, an adequate bond between 3YSZ and bimodal SS 316L was established in the micro-part after sintering. The bi-material sintered at 1350 °C had the highest hardness of 1017.4 HV along the joining region.

Funder

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3