Hybrid Nanocomposites Based on Poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone): Synthesis, Structure and Properties

Author:

Kiseleva Svetlana G.1ORCID,Bondarenko Galina N.1,Orlov Andrey V.1,Muratov Dmitriy G.1ORCID,Kozlov Vladimir V.1ORCID,Vasilev Andrey A.1ORCID,Karpacheva Galina P.1ORCID

Affiliation:

1. A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr., 29, 119991 Moscow, Russia

Abstract

Hybrid nanocomposites based on poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone) (PDACB) in salt form and graphene oxide (GO) have been obtained for the first time, and the significant influence of the preparation method on the composition and structure of nanocomposites and their functional properties has been demonstrated. Nanocomposites were prepared in three ways: via ultrasonic mixing of PDACB and GO; via in situ oxidative polymerization of 3,6-dianiline-2,5-dichloro-1,4-benzoquinone (DACB) in the presence of GO; and by heating a suspension of previously prepared PDACB and GO in DMF with the removal of the solvent. The results of the study of the composition, chemical structure, morphology, thermal stability and electrical properties of nanocomposites obtained via various methods are presented. Nanocomposites obtained by mixing the components in an ultrasonic field demonstrated strong intermolecular interactions between PDACB and GO both due to the formation of hydrogen bonds and π-stacking, as well as through electrostatic interactions. Under oxidative polymerization of DACB in the presence of GO, the latter participated in the oxidative process, being partially reduced. At the same time, a PDACB polymer film was formed on the surface of the GO. Prolonged heating for 4 h at 85 °C of a suspension of PDACB and GO in DMF led to the dedoping of PDACB with the transition of the polymer to the base non-conductive form and the reduction of GO. Regardless of the preparation method, all nanocomposites showed an increase in thermal stability compared to PDACB. All nanocomposites were characterized by a hopping mechanism of conductivity. Direct current (dc) conductivity σdc values varied within two orders of magnitude depending on the preparation conditions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3