Effect of Wood Species on Lignin-Retaining High-Transmittance Transparent Wood Biocomposites

Author:

Bradai Hamza1,Koubaa Ahmed1ORCID,Zhang Jingfa2,Demarquette Nicole R.3

Affiliation:

1. Forest Research Institute, University of Quebec in Abitibi-Témiscamingue, Rouyn-Noranda, QC J9X 5E4, Canada

2. State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology Shandong Academy of Sciences, Jinan 250300, China

3. Mechanical Engineering Department, École de Technologie Supérieure (ÉTS), Montréal, QC H3C 1K3, Canada

Abstract

This study explores lignin-retaining transparent wood biocomposite production through a lignin-modification process coupled with epoxy resin. The wood’s biopolymer structure, which includes cellulose, hemicellulose, and lignin, is reinforced with the resin through impregnation. This impregnation process involves filling the voids and pores within the wood structure with resin. Once the resin cures, it forms a strong bond with the wood fibers, effectively reinforcing the biopolymer matrix and enhancing the mechanical properties of the resulting biocomposite material. This synergy between the natural biopolymer structure of wood and the synthetic resin impregnation is crucial for achieving the desired optical transparency and mechanical performance in transparent wood. Investigating three distinct wood species allows a comprehensive understanding of the relationship between natural and transparent wood biocomposite properties. The findings unveil promising results, such as remarkable light transmittance (up to 95%) for Aspen transparent wood. Moreover, transparent wood sourced from White Spruce demonstrates excellent stiffness (E = 2450 MPa), surpassing the resin’s Young’s modulus. Also, the resin impregnation enhanced the thermal stability of natural wood. Conversely, transparent wood originating from Larch showcases superior impact resistance. These results reveal a clear correlation between wood characteristics such as density, anatomy, and mechanical properties, and the resulting properties of the transparent wood.

Funder

Canada Research Chair Program

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3