Affiliation:
1. Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
Abstract
Significant developments have been achieved with the invention of hydrogels. They are effective in many fields such as wastewater treatment, food, agriculture, pharmaceutical applications, and drug delivery. Although hydrogels have been used successfully in these areas, there is a need to make them better for future applications. Interpenetrating polymer networks (IPNs) can be created to make hydrogels more adjustable and suitable for a specific purpose. IPN formation is an innovative approach for polymeric systems. It brings two or more polymer networks together with entanglements. The properties of IPNs are controlled by its chemistry, crosslinking density, and morphology. Therefore, it is necessary to understand characterization methods in order to detect the formation of IPN structure and to develop the properties of hydrogels. In recent studies, IPN structure in hydrogels has been determined via chemical, physical, and mechanical methods such as Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction (XRD), and rheology methods. In this paper, these characterization methods will be explained, recent studies will be scrutinized, and the effectiveness of these methods to confirm IPN formation will be evaluated.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献