Numerical Analysis of Laminated Veneer Lumber Beams Strengthened with Various Carbon Composites

Author:

Bakalarz Michał Marcin1ORCID,Kossakowski Paweł Grzegorz1ORCID

Affiliation:

1. Department of Theory of Structures and Building Information Modeling (BIM), Faculty of Civil Engineering and Architecture, Kielce University of Technology, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland

Abstract

Among the many benefits of implementing numerical analysis on real objects, economic and environmental considerations are likely the most important ones. Nonetheless, it is also crucial to constrain the duration and space necessary for conducting experimental investigations. Although these benefits are clear, the applicability of such models must be appropriately verified. This research subjected validation of numerical models depicting the behavior of unstrengthened and strengthened laminated veneer lumber (LVL) beams. As a reinforcement, a carbon fiber reinforced polymer (CFRP) sheet and laminates were used. Experiments were conducted on full-scale members within the framework of the so-called four-point bending testing method. Numerical simulations were performed using the Abaqus software. Two types of material models were examined for laminated veneer lumber: linearly elastic and linearly elastic–perfectly plastic with Hill’s yield criterion. A distinction was made in the material properties of carbon composites based on their location on the height of the cross-section. The outlined numerical models accurately depict the behavior of real structural elements. The precision of predicting load-bearing capacity amounts to a few percent for strengthened beams and a maximum of eleven percent for unstrengthened beams. The relative deviation between numerical and experimental values of bending stiffness was at a maximum of seven percent. Applying the elastic–plastic model enables accurate representation of the load versus deflection relation and the distribution of stress and deformation of strengthened beams. Based on the findings, directives were provided for further optimization of the positioning of composite reinforcement along the span of the beam. Reinforcement design of existing laminated veneer lumber members can be made using presented methodology.

Funder

Kielce University of Technology

Publisher

MDPI AG

Reference40 articles.

1. Analysis of structural failures in timber structures: Typical causes for failure and failure modes;Hansson;Eng. Struct.,2011

2. Methodology and examples of revalorization of wooden structures in historic buildings;Rapp;Wiad. Konsweratorskie–J. Herit. Conserv.,2015

3. Jasieńko, J. (2003). Połączenia klejowe i Inżynierskie w Naprawie, Konserwacji i Wzmacnianiu Zabytkowych Konstrukcji Drewnianych, Dolnośląskie Wydawnictwo Edukacyjne.

4. Strength enhancement of timber beams using steel plates–Review and experimental tests;Nowak;Drewno,2016

5. Composite Timber Beams Strengthened by Steel and CFRP;Ghazijahani;J. Compos. Constr.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3