Numerical Study of Melt-Spinning Dynamic Parameters and Microstructure Development with Ongoing Crystallization

Author:

Liu Xiangqian1ORCID,Feng Pei12ORCID,Yang Chongchang12,Hu Zexu123

Affiliation:

1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China

2. Engineering Research Center of Advanced Textile Machinery, Donghua University, Shanghai 201620, China

3. State Key Laboratory of Fiber Material Modification, Donghua University, Shanghai 201620, China

Abstract

In response to an investigation on the paths of changes in the crystallization and radial differences during the forming process of nascent fibers, in this study, we conducted numerical simulation and analyzed the changes in crystallization mechanical parameters and tensile properties through a fluid dynamics two-phase model. The model was based on the melt-spinning method focusing on melt spinning, the environment of POLYFLOW, and the method of joint simulation, coupled with Nakamura crystallization kinetics, including the development of process collaborative parameters, stretch-induced crystallization, viscoelasticity, filament cooling, gravity term, inertia, and air resistance. Finally, for nylon 6 BHS and CN9987 resin spinning, the model successfully predicted the distribution changes in temperature, velocity, strain rate tensor, birefringence, and stress tensor along the axial and radial fibers and obtained the variation pattern of fibers’ crystallinity along the entire spinning process under different stretching rates. Furthermore, we also explored the effects of spinning conditions, including inlet flow rate, winding speeds, and the extrusion temperature, on the fibers’ crystallization process and obtained the influence rules of different spinning conditions on fiber crystallization. Knowing the paths of changes in mechanical performance can provide important guidance and optimization strategies for the future industrial preparation of high-performance fibers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3