Development of Halloysite Nanotube-Infused Thermoset Soybean Bio-Resin for Advanced Medical Packaging

Author:

Saedi Shahab1,Sobhan Abdus12ORCID,Hoff Magdalene1,Wang Siqun3ORCID,Muthukumarappan Kasiviswanathan1

Affiliation:

1. Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA

2. College of Agriculture and Applied Sciences, Alcorn State University, Lorman, MS 39096, USA

3. Center for Renewable Carbon, The University of Tennessee, Knoxville, TN 37996, USA

Abstract

The development of eco-friendly, mechanically stable, and biocompatible materials for medical packaging has gained significant attention in recent years. Halloysite nanotubes (HNTs) have emerged as a promising nanomaterial due to their unique tubular structure, high aspect ratio, and biocompatibility. We aim to develop a novel soybean oil-based thermoset bio-resin incorporating HNTs and to characterize its physical and functional properties for medical packaging. Soybean oil was epoxidized using an eco-friendly method and used as a precursor for preparing the thermoset resin (ESOR). Different amounts of HNTs (0.25, 0.50, and 1.0 wt.%) were used to prepare the ESOR/HNTs blends. Various characteristics such as transparency, tensile strength, thermal resistance, and water absorption were investigated. While incorporating HNTs improved the tensile strength and thermal properties of the ESOR, it noticeably reduced its transparency at the 1.0 wt.% level. Therefore, HNTs were modified using sodium hydroxide and (3-Aminopropyl) triethoxysilane (APTES) and ESOR/HNTs blends were made using 1.0 wt.% of modified HNTs. It was shown that modifying HNTs using NaOH improved the transparency and mechanical properties of prepared blends compared to those with the same amount of unmodified HNTs. However, modifying using (3-Aminopropyl) triethoxysilane (APTES) decreased the transparency but improved the water absorption of prepared resins. This study provides valuable insights into the design of HNT-based ESOR blends as a sustainable material for medical packaging, contributing to the advancement of eco-friendly packaging solutions in the healthcare industry.

Funder

South Dakota Soybean Research and Promotion Council

South Dakota Agriculture Experimental Station (AES) Hatch

Multistate Hatch research support at South Dakota State University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3