The Influence of Oil and Thermal Aging on the Sealing Characteristics of NBR Seals

Author:

Li Yiding1,Wu Jian12ORCID,Chen Zhihao1,Zhang Ziqi1,Su Benlong12ORCID,Wang Youshan12

Affiliation:

1. Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China

2. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150090, China

Abstract

Nitrile Butadiene Rubber (NBR) is widely used as a sealing material due to its excellent mechanical properties and good oil resistance. However, when using NBR material, the seal structure is unable to avoid the negative effects of rubber aging. Hence, the influence of oil and thermal aging on the characteristics of NBR seals was studied by coupling the mechanical behavioral changes with the tribological behavioral changes of NBR in oil and the thermal environment. For this paper, aging testing and compression testing of NBR were carried out. Additionally, friction testing between friction pairs under different aging times was carried out. The surface morphology of the NBR working surface under different aging conditions was also observed. Finally, coefficients of different test conditions were introduced into the finite element model of NBR seals. It can be seen from the results that the elastic modulus increased with the increase in aging time in the thermal oxidative aging testing. The elastic modulus after 7 days of thermal oxidative aging increased by 135.45% compared to the unaged case, and the elastic modulus after 7 days of oil aging increased by 15.03% compared to the unaged case. The compression set rate of NBR increased significantly with the increase in aging time and temperature. The coefficient of friction (COF) between friction pairs increased first and then decreased with the increase in aging time. The maximum contact pressure decreased by 2.43% between the shaft and sealing ring and decreased by 4.01% between the O-ring and groove. The proportion of the effective sealing area decreased by 3.05% between the shaft and sealing ring and decreased by 6.11% between the O-ring and groove. Furthermore, the sealing characteristics between the O-ring and groove were better than those between the shaft and sealing ring.

Funder

National Key Laboratory of Science and Technology on Advanced Composites in Special Environments

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3