Biodegradable Biobased Polymers: A Review of the State of the Art, Challenges, and Future Directions

Author:

Jha Swarn1,Akula Bhargav2ORCID,Enyioma Hannah3,Novak Megan2ORCID,Amin Vansh3,Liang Hong1ORCID

Affiliation:

1. J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA

2. Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3123, USA

3. Department of Electrical Engineering, Texas A&M University, College Station, TX 77843-3123, USA

Abstract

Biodegradable biobased polymers derived from biomass (such as plant, animal, marine, or forestry material) show promise in replacing conventional petrochemical polymers. Research and development have been conducted for decades on potential biodegradable biobased polymers such as polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and succinate polymers. These materials have been evaluated for practicality, cost, and production capabilities as limiting factors in commercialization; however, challenges, such as the environmental limitations on the biodegradation rates for biodegradable biobased polymer, need to be addressed. This review provides a history and overview of the current development in the synthesis process and properties of biodegradable biobased polymers, along with a techno-commercial analysis and discussion on the environmental impacts of biodegradable biobased polymers. Specifically, the techno-commercial analysis focuses on the commercial potential, financial assessment, and life-cycle assessment of these materials, as well as government initiatives to facilitate the transition towards biodegradable biobased polymers. Lastly, the environmental assessment focuses on the current challenges with biodegradation and methods of improving the recycling process and reusability of biodegradable biobased polymers.

Publisher

MDPI AG

Reference174 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3