Polymer Composite Hydrogel Based on Polyvinyl Alcohol/Polyacrylamide/Polybenzoxazine Carbon for Use in Flexible Supercapacitors

Author:

Periyasamy Thirukumaran1ORCID,Asrafali Shakila Parveen1ORCID,Islam Mobinul2ORCID,Bari Gazi A. K. M. Rafiqul3ORCID,Lee Jaewoong1ORCID

Affiliation:

1. Department of Fiber System Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea

2. Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea

3. School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea

Abstract

Polymer gels are cross-linked polymer networks swollen by a solvent. These cross-linked networks are interconnected to produce a three-dimensional molecular framework. It is this cross-linked network that provides solidity to the gel and helps to hold the solvent in place. The present work deals with the fabrication of polybenzoxazine carbon (PBzC)-based gels that could function as a solid electrode in flexible supercapacitors (SCs). With the advantage of molecular design flexibility, polybenzoxazine-based carbon containing different hetero-atoms was synthesized. A preliminary analysis of PBzC including XRD, Raman, XPS, and SEM confirmed the presence of hetero-atoms with varying pore structures. These PBz-carbons, upon reaction with polyvinyl alcohol (PVA) and acrylamide (AAm), produced a composite polymer hydrogel, PVA/poly (AAm)/PBzC. The performance of the synthesized hydrogel was analyzed using a three-electrode system. PVA/poly (AAm)/PBzC represented the working electrode. The inclusion of PBzC within the PVA/poly (AAm) matrix was evaluated by cyclic voltammetry and galvanostatic charge/discharge measurements. A substantial increase in the CV area and a longer charge/discharge time signified the importance of PBzC inclusion. The PVA/poly (AAm)/PBzC electrode exhibited larger specific capacitance (Cs) of 210 F g−1 at a current density of 0.5 A g−1 when compared with the PVA/poly (AAm) electrode [Cs = 92 F g−1]. These improvements suggest that the synthesized composite hydrogel can be used in flexible supercapacitors requiring light weight and wearability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3