Optimization Course of Titanium Nitride Nanofiller Loading in High-Density Polyethylene: Interpretation of Reinforcement Effects and Performance in Material Extrusion 3D Printing

Author:

Petousis Markos1ORCID,Sagris Dimitris2ORCID,Papadakis Vassilis34ORCID,Moutsopoulou Amalia1,Argyros Apostolos56ORCID,David Constantine2ORCID,Valsamos John1,Spiridaki Mariza1ORCID,Michailidis Nikolaos56ORCID,Vidakis Nectarios1

Affiliation:

1. Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece

2. Department of Mechanical Engineering, Serres Campus, International Hellenic University, 62124 Serres, Greece

3. Institute of Electronic Structure and Laser of the Foundation for Research and Technology-Hellas (IESL-FORTH)–Hellas, N. Plastira 100 m, 70013 Heraklion, Greece

4. Department of Industrial Design and Production Engineering, University of West Attica, 12243 Athens, Greece

5. Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

6. Centre for Research & Development of Advanced Materials (CERDAM), Centre for Interdisciplinary Research and Innovation, Balkan Centre, Building B’, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece

Abstract

In this study, titanium nitride (TiN) was selected as an additive to a high-density polyethylene (HDPE) matrix material, and four different nanocomposites were created with TiN loadings of 2.0–8.0 wt. % and a 2 wt. % increase step between them. The mixtures were made, followed by the fabrication of the respective filaments (through a thermomechanical extrusion process) and 3D-printed specimens (using the material extrusion (MEX) technique). The manufactured specimens were subjected to mechanical, thermal, rheological, structural, and morphological testing. Their results were compared with those obtained after conducting the same assessments on unfilled HDPE samples, which were used as the control samples. The mechanical response of the samples improved when correlated with that of the unfilled HDPE. The tensile strength improved by 24.3%, and the flexural strength improved by 26.5% (composite with 6.0 wt. % TiN content). The dimensional deviation and porosity of the samples were assessed with micro-computed tomography and indicated great results for porosity improvement, achieved with 6.0 wt. % TiN content in the composite. TiN has proven to be an effective filler for HDPE polymers, enabling the manufacture of parts with improved mechanical properties and quality.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3