Preparation and Structure–Property Relationship Study of Piezoelectric–Conductive Composite Polymer Nanofiber Materials for Bone Tissue Engineering

Author:

Jin Zhengyang1,Wei Suiyan2,Jin Wenyang1,Lu Bingheng134,Xu Yan1

Affiliation:

1. School of Mechanical Engineering, Xinjiang University, Urumchi 830017, China

2. The First Affiliated Hospital of Xinjiang Medical University, Urumchi 830054, China

3. Mirco- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China

4. National Innovation Institute of Additive Manufacturing, Xi’an 710000, China

Abstract

This study aimed to develop Janus-, cross-network-, and coaxial-structured piezoelectric–conductive polymer nanofibers through electrospinning to mimic the piezoelectricity of bone and facilitate the conduction of electrical signals in bone tissue repair. These nanofibers were constructed using the piezoelectric polymer polyvinylidene fluoride, and the conductive fillers reduced graphene oxide and polypyrrole. The influence of structural features on the electroactivity of the fibers was also explored. The morphology and components of the various structural samples were characterized using SEM, TEM, and FTIR. The electroactivity of the materials was assessed with a quasi-static d33 meter and the four-probe method. The results revealed that the piezoelectric–conductive phases were successfully integrated. The Janus-structured nanofibers demonstrated the best electroactivity, with a piezoelectric constant d33 of 24.5 pC/N and conductivity of 6.78 × 10−2 S/m. The tensile tests and MIP measurements showed that all samples had porosity levels exceeding 70%. The tensile strength of the Janus and cross-network structures exceeded that of the periosteum (3–4 MPa), with average pore sizes of 1194.36 and 2264.46 nm, respectively. These properties indicated good mechanical performance, allowing material support while preventing fibroblast invasion. The CCK-8 and ALP tests indicated that the Janus-structured samples were biocompatible and significantly promoted the proliferation of MC3T3-E1 cells.

Funder

Natural Science Foundation of Xinjiang Uyghur Autonomous Region

Xinjiang University Outstanding Doctoral Student Research Innovation Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3