Investigation of Dynamic Viscoelastic Asymmetric Response of PA6 Film Based on Fractional Rheological Model

Author:

Li Bowen1ORCID,Liao Guangkai1,Li Yuankang1ORCID,Xie Zhenyan1,Cui Lingna1,Cao Kaikai2,Liu Yuejun1ORCID

Affiliation:

1. Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China

2. Zhuzhou Times Engineering Plastics Industrial Co., Ltd., Zhuzhou 412008, China

Abstract

Polyamide 6 (PA6) film as a typical viscoelastic material, satisfies the time–temperature superposition (TTS), and demonstrates obvious dynamic strain amplitude and frequency correlation under dynamic load. The investigation of the dynamic mechanical behavior of PA6 film is essential to ensure the safety of these materials in practical applications. In addition, dynamic mechanical property testing under conventional experimental conditions generally focuses on the short-term mechanical performance of materials. Therefore, the dynamic viscoelasticity of PA6 film was tested using a dynamic thermo-mechanical analyzer (DMA) in this study, and the complex modulus master curve was constructed based on time–temperature superposition (TTS) to realize the accelerated characterization of long-term mechanical properties. Furthermore, according to experimentally obtained asymmetric characteristics of the Cole–Cole diagram and the loss modulus master curve of the PA6 film, the parameter distribution of the fractional Zener model and the modified fractional Zener model were compared, and the asymmetric dynamic viscoelastic response of PA6 film under different conditions was systematically investigated using these models. The results indicate that the modified fractional Zener model can truly describe the dynamic asymmetric characteristics of PA6 film, verify the feasibility and advantages of the modified fractional rheological model, and provide some theoretical guidance for exploring the tensile rheological mechanism of PA6 film.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Hunan Provincial Education Department

Hunan provincial Innovation Foundation for Postgraduate

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3