The Effect of Rubber–Metal Interactions on the Mechanical, Magneto–Mechanical, and Electrical Properties of Iron, Aluminum, and Hybrid Filler-Based Styrene–Butadiene Rubber Composites

Author:

Alam Md Najib1ORCID,Kumar Vineet1ORCID,Jeong Seok-U2,Park Sang-Shin1ORCID

Affiliation:

1. School of Mechanical Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan 38541, Republic of Korea

2. Graduate School of Mechanical Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan 38541, Republic of Korea

Abstract

Multifunctional stretchable rubber composites are gaining attention due to their unique electrical, mechanical, and magnetic properties. However, their high production costs pose economic challenges. This study explores the use of cost-effective metal powders—iron, aluminum, and their 1:1 (vol/vol) hybrid filler—in styrene–butadiene rubber composites, varying from 10 to 20 vol%. The effects of these metal particles on the mechanical, electrical, morphological, and swelling properties were investigated. Metal particles generally act as non-reinforcing fillers but can significantly enhance the mechanical modulus, electrical, and magnetic properties based on the filler structure and the filler–rubber interactions. Iron-based composites exhibit significant electrical conductivity and excellent magnetic properties. Aluminum enhances the modulus, while the combination yields average mechanical properties with added magnetic characteristics. Iron demonstrates higher reactivity with sulfur-based crosslinking ingredients, adversely affecting the rubber matrix’s crosslinks, as shown by swelling tests. This reactivity is attributed to iron’s transition metal characteristics. At 20 vol%, iron-filled composites display the highest magnetic anisotropic effect on toughness (~25%) under a magnetic field by permanent magnets and excellent electrical conductivity (1.5 × 10−2 S/m). While iron significantly boosts the electrical and magnetic properties, higher filler amounts degrade the mechanical properties. These composites are currently suitable for electrical and smart mechanical applications, but incorporating reinforcing fillers could enhance their robustness for broader applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3