Affiliation:
1. College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
Abstract
Multifunctional wearable electronic sensors exhibit significant potential for applications in health management, motion tracking, intelligent healthcare, etc. In this study, we developed a novel assembly method for a polymeric silver nanowire (Ag NW)/transition metal carbide/nitride (MXene) @Loofah device using a facile solution dip-coating technique. During the pretreatment phase, the loofah was conditioned with polydiallyldimethylammonium chloride (PDAC), promoting the self-assembly of MXene layers and bolstering device stability. Then, the Ag NWs/MXene@Loofah was packaged with polyurethane to form a piezoresistive pressure sensor, which demonstrated superior pressure-sensing capabilities and was adept at registering movements of human joints and even subtle pulses. The design strategy presents a novel and rational approach to developing efficient pressure sensors.
Funder
National Natural Science Foundation of China
Support Plan of Science and Technology Department of Sichuan Province, China