Study on Adsorption Characteristics and Water Retention Properties of Attapulgite–Sodium Polyacrylate and Polyacrylamide to Trace Metal Cadmium Ion

Author:

Cai Ziming1,Zhan Feng1,Wang Yingnan2,Wu Meiling2,Kong Lingjian2,Wang An2ORCID,Huang Zhanbin2

Affiliation:

1. School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

2. School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

The adsorption mechanism of superabsorbent polymer (SAP) can provide theoretical guidance for their practical applications in different environments. However, there has been limited research on the mechanism of attapulgite–sodium polyacrylate. This research aimed to compare the Cd(II) adsorption characteristics and water retention properties of organic–inorganic composite SAP (attapulgite–sodium polyacrylate, OSAP) and organic SAP (polyacrylamide, JSAP). Batch experiments were used to investigate the kinetics of Cd(II) adsorption, as well as the thermodynamic properties and factors influencing these properties. The results show that the Cd(II) adsorption capacity was directly proportional to the pH value. The maximum adsorption capacities of OSAP and JSAP were of 770 and 345 mg·g−1. The Cd(II) adsorption for OSAP and JSAP conformed to the Langmuir and the quasi-second-order kinetic model. This indicates that chemical adsorption is the primary mechanism. The adsorption process was endothermic (ΔH0 > 0) and spontaneous (ΔG0 < 0). The water adsorption ratios of OSAP and SAP were 474.8 and 152.6 in pure water. The ratio decreases with the increase in Cd(II) concentration. OSAP and JSAP retained 67.23% and 38.37% of the initial water adsorption after six iterations of water adsorption. Hence, OSAP is more suitable than JSAP for agricultural and environmental ecological restoration in arid and semi-arid regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3