Hygrothermal Degradation of Epoxy Electrical Insulating Material—Testing and Mathematical Modeling

Author:

Leffler Jan1ORCID,Kaska Jan2ORCID,Kadlec Petr1ORCID,Prosr Pavel1ORCID,Smidl Vaclav3ORCID,Trnka Pavel1ORCID

Affiliation:

1. Department of Materials and Technology, Faculty of Electrical Engineering, University of West Bohemia, 301 00 Pilsen, Czech Republic

2. Department of Electrical and Computational Engineering, Faculty of Electrical Engineering, University of West Bohemia, 301 00 Pilsen, Czech Republic

3. Research and Innovation Centre for Electrical Engineering, Faculty of Electrical Engineering, University of West Bohemia, 301 00 Pilsen, Czech Republic

Abstract

The degradation of electrical insulating materials has been a subject of interest for decades as they are commonly applied in many fields of electrical engineering. Suitably modeling such a process is important since the known and well-described degradation process reveals the effect of ambient conditions, and this allows us to possibly estimate a material’s remaining useful life. However, not many studies are dealing with the effect of the hygrothermal degradation of impregnating mono-component epoxy resins in the context of electrical engineering. Therefore, this study deals with this issue and discusses both the dielectric response (based on the measurement of relative permittivity, dissipation factor, and dielectric strength) and the mechanical response (based on measurements of tensile strength and Shore D hardness) to a hygrothermal degradation experiment. In addition, the results of thermal analyses are presented for the evaluation of the pristine specimen manufacturing process and possible post-curing processes. Furthermore, this study presents several methodologies for modeling the degradation process, including a novel methodology in this area based on Bayesian experimental design. As an outcome, mechanical parameters are proven to be specific in terms of the actual condition of the material and the Bayesian enhanced degradation model seems to be superior to the conventional evaluation methods in this particular study.

Funder

project Bayesian Experimental Design for the Development of Material-Aging Models

project Materials and Technologies for Electrical Engineering

project Computational Intelligence-Assisted Design of Electric and Electronic Devices

Publisher

MDPI AG

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3