Composites from Recycled Polypropylene and Carboxymethylcellulose with Potential Uses in the Interior Design of Vehicles

Author:

Caramitu Alina Ruxandra1ORCID,Ciobanu Romeo Cristian2,Ion Ioana1,Marin Mihai1ORCID,Lungulescu Eduard-Marius1ORCID,Marinescu Virgil1,Aflori Magdalena3ORCID,Bors Adriana Mariana4ORCID

Affiliation:

1. National Institute for Research and Development in Electrical Engineering—ICPE-CA, 030138 Bucharest, Romania

2. Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania

3. Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania

4. National Research and Development Institute for Optoelectronics-INOE 2000-IHP, 040558 Bucharest, Romania

Abstract

This research investigates novel polymeric composite materials for automotive interior trim applications. The composites utilize recycled polypropylene (PPr) matrix and carboxymethylcellulose (CMC) as filler (PPr/CMC: 100/0, 95/5, and 90/10 wt.%). The materials were processed by extrusion and injection molding. Considering their intended application, the composites were evaluated for resistance to key climatic factors, i.e., temperature, humidity, and UV radiation. In addition, structural analyses and FTIR analyses were performed to assess potential heterogeneity and thermal stability. Following FTIR tests, the incorporation of carboxymethyl cellulose in polypropylene is confirmed by the detection of characteristic CMC bands for -OH, C=O, and C-O-C groups. The results indicate slight structural heterogeneity in the 5% and 10% CMC composites. However, no thermal distortions were observed in either the composites or the PPr matrix itself. The behavior of PPr/CMC composites under the action of the mentioned climatic factors has been assessed from the variation of dielectric characteristics with frequency. The strong polarization of CMC leads to a sharp increase in composites electrical conductivity after submersion in water for 480 h, suggesting weakening of the composite structure. After exposure to UV radiation, a sharp increase in conductivity is observed even after the first cycle (72 h) of UV radiation. Following the experimental results obtained in our study, it is recommended to use the PPr +10% CMC composite for obtaining different interior ornaments (carpets, supports, etc.). At the same time, the use of these materials also has the advantage of lightening the mass of the vehicle due to their lower density than polymers.

Funder

Romanian Ministry of Research, Innovation and Digitalization

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3