Morphological 3D Analysis of PLGA/Chitosan Blend Polymer Scaffolds and Their Impregnation with Olive Pruning Residues via Supercritical CO2

Author:

García-Casas Ignacio1ORCID,Valor Diego1ORCID,Elayoubi Hafsa1,Montes Antonio1ORCID,Pereyra Clara1ORCID

Affiliation:

1. Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Excellence, Agrifood Campus (CeiA3), University of Cádiz, 11510 Puerto Real, Spain

Abstract

Natural extracts, such as those from the residues of the Olea europaea industry, offer an opportunity for use due to their richness in antioxidant compounds. These compounds can be incorporated into porous polymeric devices with huge potential for tissue engineering such as bone, cardiovascular, osteogenesis, or neural applications using supercritical CO2. For this purpose, polymeric scaffolds of biodegradable poly(lactic-co-glycolic acid) (PLGA) and chitosan, generated in situ by foaming, were employed for the supercritical impregnation of ethanolic olive leaf extract (OLE). The influence of the presence of chitosan on porosity and interconnectivity in the scaffolds, both with and without impregnated extract, was studied. The scaffolds have been characterized by X-ray computed microtomography, scanning electron microscope, measurements of impregnated load, and antioxidant capacity. The expansion factor decreased as the chitosan content rose, which also occurred when OLE was used. Pore diameters varied, reducing from 0.19 mm in pure PLGA to 0.11 mm in the two experiments with the highest chitosan levels. The connectivity was analyzed, showing that in most instances, adding chitosan doubled the average number of connections, increasing it by a factor of 2.5. An experiment was also conducted to investigate the influence of key factors in the impregnation of the extract, such as pressure (10–30 MPa), temperature (308–328 K), and polymer ratio (1:1–9:1 PLGA/chitosan). Increased pressure facilitated increased OLE loading. The scaffolds were evaluated for antioxidant activity and demonstrated substantial oxidation inhibition (up to 82.5% under optimal conditions) and remarkable potential to combat oxidative stress-induced pathologies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3