Creep Failure Characteristics and Mathematical Modeling of High-Density Polyethylene Geomembranes under High Stress Levels

Author:

Wang Libo1ORCID,Cen Weijun1,Bauer Erich2ORCID,Wei Jiangliang1,Wen Zhenyu1,Yan Jun3

Affiliation:

1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

2. Institute of Applied Mechanics, Graz University of Technology, 8010 Graz, Austria

3. Department of Geotechnical Engineering, China Institute of Water Resources and Hydropower Research, Beijing 100083, China

Abstract

To explore the creep characteristics of geomembrane under different tensile stresses, a series of creep tests were carried out on high-density polyethylene (HDPE) geomembrane specimens. For the interpretation and fitting of the experimental data, refined approximation functions were proposed. Particular attention was paid to the creep failure behavior under high tensile stresses, i.e., 70%, 80%, and 90% of maximum peak stress. To investigate the effects of size on the mechanical response, experiments with two different membrane thicknesses were conducted. The results obtained under high stress levels were compared with creep tests at medium and low stress levels. Depending on load level, different creep characteristics can be distinguished. In the secondary creep state, the creep velocity is higher for higher load levels. In contrast to the medium and low load levels, the geomembrane under high stresses underwent the tertiary creep stage after instantaneous deformation and primary and secondary creep stages. In some tests, it was observed that under very high stress levels, creep velocity does not necessarily follow the expected trend and creep rupture can occur within a short time. For numerical simulation, an improved mathematical model was proposed to reproduce in a unified manner the experimental data of the whole non-linear evolution of creep elongation under different stress levels.

Funder

National Natural Science Foundation of China

Open Research Fund of Hunan Provincial Key Laboratory of Hydropower Development Key Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3