Thermoplastic Vulcanizates with an Integration of High Wear-Resistant and Anti-Slip Properties Based on Styrene Ethylene Propylene Styrene Block Copolymer/Styrene Ethylene Butylene Styrene Block Copolymer/Solution-Polymerization Styrene-Butadiene Rubber

Author:

Li Zhicheng1,Xiao Jianbin1

Affiliation:

1. Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Abstract

Distinguished from traditional vulcanized rubber, which is not reusable, thermoplastic elastomer (TPV) is a material that possesses both the excellent resilience of traditional vulcanized rubber and the recyclability of thermoplastic, and TPVs have been widely studied in both academia and industry because of their outstanding green properties. In this study, new thermoplastic elastomers based on solution polymerized styrene butadiene rubber (SSBR) and thermoplastic elastomers (SEPSs/SEBSs) were prepared by the first dynamic vulcanization process. The high slip resistance and abrasion resistance of SSBR are utilized to improve the poor slip resistance of SEPSs/SEBSs, which provides a direction for the recycling of shoe sole materials. In this paper, the effects of different ratios of the rubber/plastic phase (R/P) on the mechanical properties, rheological properties, micro-morphology, wear resistance, and anti-slip properties of SSBR/TPE TPVs are investigated. The results show that the SSBR/TPE TPVs have good mechanical properties. The tensile strength, tear strength, hardness, and resilience of the TPVs decrease slightly with an increasing R/P ratio. Still, TPVs have a tensile strength of 18.1 MPa when the ratio of R/P is 40/100, and this reaches the performance of the vulcanized rubber sole materials commonly used in the market. In addition, combined with microscopic morphology analysis (SEM), it was found that, with the increase in the R/P ratio, the size of the rubber particles gradually increased, forming a stronger crosslinking network, but the rheological properties of TPVs gradually decreased; crosslinking network enhancement led to the increase in the size of the rubber particles, and the increase in the size of rubber particles made the material in the abrasion of rubber particles fall easily, thus increasing its abrasion volume. Through dynamic mechanical analysis and anti-slip tests, when the R/P ratio was 40/100, the tan δ of TPVs at 0 °C was 0.35, which represents an ordinary vulcanized rubber sole material in the market. The viscoelasticity of TPVs increased with the increase in the R/P ratio, which improved the anti-slip performance of TPVs. SSBR/TPE TPVs are expected to be used in footwear and automotive fields due to their excellent abrasion resistance and anti-slip performance.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3