Combined Control of DFIG-Based Wind Turbine and Battery Energy Storage System for Frequency Response in Microgrids

Author:

Gomez Luis. A. G.ORCID,Grilo Ahda P.,Salles M. B. C.ORCID,Sguarezi Filho A. J.

Abstract

This paper presents a novel methodology for frequency control of a microgrid through doubly fed induction generator (DFIG) employing battery energy storage system (BESS) and droop control. The proposed microgrid frequency control is the result of the active power injection from the droop control implemented in the grid side converter (GSC) of the DFIG, and the BESS implemented in the DC link of the back-to-back converter also in the DFIG. This methodology guarantees the battery system charge during operation of the connected DFIG in the network, and the frequency control in microgrid operation after an intentional disturbance. In order for the DFIG to provide frequency support to the microgrid, the best-performing droop gain value is selected. Afterwards its performance is evaluated individually and together with the power injected by the battery. The power used for both battery charging and frequency support is managed and processed by the GSC without affecting the normal operation of the wind system. The simulation tests are performed using Matlab/Simulink toolbox.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal wind power generation system by honey badger algorithm with differential evolution strategies;Applied Soft Computing;2023-12

2. Synchronverter with Virtual Resistor-Based Frequency Control Technique Applied in Doubly-Fed Induction Generator;2023 IEEE 8th Southern Power Electronics Conference (SPEC);2023-11-26

3. Electromagnetic Analysis of a DFIG‘s Controlled Operation Using Finite Elements Method;Smart Grids—Renewable Energy, Power Electronics, Signal Processing and Communication Systems Applications;2023-11-22

4. Modified Cuk Converter With Bird Swarm Optimized PI Controller For Microgrid System;2023 International Conference on Circuit Power and Computing Technologies (ICCPCT);2023-08-10

5. Analysis of Doubly Fed Induction Generator-based wind turbine system for fault ride through capability investigations;Wind Engineering;2023-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3