Determination of the Required Power Response of Inverters to Provide Fast Frequency Support in Power Systems with Low Synchronous Inertia

Author:

Rubio Alejandro,Behrends Holger,Geißendörfer Stefan,Maydell Karsten von,Agert CarstenORCID

Abstract

The decommissioning of conventional power plants and the installation of inverter-based renewable energy technologies decrease the overall power system inertia, increasing the rate of change of frequency of a system (RoCoF). These expected high values of RoCoF shorten the time response needed before load shedding or generation curtailment takes place. In a future scenario where renewables are predominant in power systems, the ability of synchronous machines to meet such conditions is uncertain in terms of capacity and time response. The implementation of fast power reserve and synthetic inertia from inverter-based sources was assessed through the simulation of two scenarios with different grid sizes and primary reserve responses. As main results it was obtained that the full activation time for a fast power reserve with penetration above 80% of inverter-based generation would need to be 100 ms or less for imbalances up to 40%, regardless of the synchronous response and grid size, meaning that the current frequency measurement techniques and the time for fast power reserve deployment would not ensure system stability under high unbalanced conditions. At less-unbalanced conditions, the grid in the European scale was found to become critical with imbalances starting at 3% and a non-synchronous share of 60%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. Energiewende: What do the New Laws Mean? Ten Questions and Answers about EEG 2017, the Electricity Market Act, and the Digitisation Act https://www.agora-energiewende.de/fileadmin2/Projekte/2016/EEG-FAQ/Agora_FAQ-EEG_EN_WEB.pdf

2. Flexibility in Thermal Power Plants–With a Focus on Existing Coal-Fired Power Plants;Energiewende,2017

3. dena Ancillary Services Study 2030: Security and Reliability of a Power Supply with a High Percentage of Renewable Energy,2014

4. Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy

5. California ISO (CAISO) frequency response study;Miller;GE Energy,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3