Accuracy Analysis of DNN-Based Pose-Categorization Model and Activity-Decision Algorithm

Author:

Park Bo RangORCID,Choi Eun JiORCID,Choi Young JaeORCID,Moon Jin WooORCID

Abstract

The objective of this study is to develop (1) a pose-categorization model that classifies the poses of an occupant based on their image in an indoor space and (2) an activity-decision algorithm that identifies the activity being performed by the occupant. For developing an automated intelligent model, a deep neural network is adopted. The model considers the coordinates of the joints of the occupant in the image as input data and returns the pose of the occupant. Datasets composed of indoor images of home and office environments are used for training and testing the model. The training and testing accuracies of the optimized model were 100% for both the home and office environments. A representative activity of an occupant for a certain period has to be decided to control an indoor environment for comfort. The activity-decision algorithm employs a frequency-based method to determine the representative activity type for real-time occupant poses using the pose-categorization model. This study highlights the potential of the developed model and algorithm to determine the activity of occupants to provide an optimal thermal environment corresponding to the individual’s metabolic rate.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference27 articles.

1. Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental quality and building design

2. Productivity in buildings: the ‘killer’ variables

3. Thermal Comfort;Fanger,1970

4. Thermal Environmental Conditions for Human Occupancy,2017

5. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3