A New Method of Lithology Classification Based on Convolutional Neural Network Algorithm by Utilizing Drilling String Vibration Data

Author:

Chen Gang,Chen Mian,Hong Guobin,Lu Yunhu,Zhou Bo,Gao Yanfang

Abstract

Formation lithology identification is of great importance for reservoir characterization and petroleum exploration. Previous methods are based on cutting logging and well-logging data and have a significant time lag. In recent years, many machine learning methods have been applied to lithology identification by utilizing well-logging data, which may be affected by drilling fluid. Drilling string vibration data is a high-density ancillary data, and it has the advantages of low-latency, which can be acquired in real-time. Drilling string vibration data is more accessible and available compared to well-logging data in ultra-deep well drilling. Machine learning algorithms enable us to develop new lithology identification models based on these vibration data. In this study, a vibration dataset is used as the signal source, and the original vibration signal is filtered by Butterworth (BHPF). Vibration time–frequency characteristics were extracted into time–frequency images with the application of short-time Fourier transform (STFT). This paper develops lithology classification models using new data sources based on a convolutional neural network (CNN) combined with Mobilenet and ResNet. This model is used for complex formation lithology, including fine gravel sandstone, fine sandstone, and mudstone. This study also carries out related model accuracy verification and model prediction results interpretation. In order to improve the trustworthiness of decision-making results, the gradient-weighted class-activated thermal localization map is applied to interpret the results of the model. The final verification test shows that the single-sample decision time of the model is 10 ms, the test macro precision rate is 90.0%, and the macro recall rate is 89.3%. The lithology identification model based on vibration data is more efficient and accessible than others. In conclusion, the CNN model using drill string vibration supplies a superior method of lithology identification. This study provides low-latency lithology classification methods to ensure safe and fast drilling.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3