A Multivariate Statistics-Based Approach for Detecting Diesel Engine Faults with Weak Signatures

Author:

Wang Jinxin,Zhang Chi,Ma Xiuzhen,Wang Zhongwei,Xu YuandongORCID,Cattley Robert

Abstract

The problem of timely detecting the engine faults that make engine operating parameters exceed their control limits has been well-solved. However, in practice, a fault of a diesel engine can be present with weak signatures, with the parameters fluctuating within their control limits when the fault occurs. The weak signatures of engine faults bring considerable difficulties to the effective condition monitoring of diesel engines. In this paper, a multivariate statistics-based fault detection approach is proposed to monitor engine faults with weak signatures by taking the correlation of various parameters into consideration. This approach firstly uses principal component analysis (PCA) to project the engine observations into a principal component subspace (PCS) and a residual subspace (RS). Two statistics, i.e., Hotelling’s T 2 and Q statistics, are then introduced to detect deviations in the PCS and the RS, respectively. The Hotelling’s T 2 and Q statistics are constructed by taking the correlation of various parameters into consideration, so that faults with weak signatures can be effectively detected via these two statistics. In order to reasonably determine the control limits of the statistics, adaptive kernel density estimation (KDE) is utilized to estimate the probability density functions (PDFs) of Hotelling’s T 2 and Q statistics. The control limits are accordingly derived from the PDFs by giving a desired confidence level. The proposed approach is demonstrated by using a marine diesel engine. Experimental results show that the proposed approach can effectively detect engine faults with weak signatures.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3