Abstract
Identifying the suitable reaction conditions is key to achieve high performance and economic efficiency in any catalytic process. In this study, the catalytic performance of a Ni/Al2O3 catalyst, a benchmark system—was investigated in steam reforming of toluene as a biomass gasification tar model compound to explore the effect of reforming temperature, steam to carbon (S/C) ratio and residence time on toluene conversion and gas products. An S/C molar ratio range from one to three and temperature range from 700 to 900 °C was selected according to thermodynamic equilibrium calculations, and gas hourly space velocity (GHSV) was varied from 30,600 to 122,400 h−1 based on previous work. The results suggest that 800 °C, GHSV 61,200 h−1 and S/C ratio 3 provide favourable operating conditions for steam reforming of toluene in order to get high toluene conversion and hydrogen productivity, achieving a toluene to gas conversion of 94% and H2 production of 13 mol/mol toluene.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献