Characterization of Fast Pyrolysis Bio-Oil from Hardwood and Softwood Lignin

Author:

Echresh Zadeh ZahraORCID,Abdulkhani AliORCID,Saha Basudeb

Abstract

The depletion of fossil fuel reserves and the increase of greenhouse gases (GHG) emission have led to moving towards alternative, renewable, and sustainable energy sources. Lignin is one of the significant, renewable and sustainable energy sources of biomass and pyrolysis is one of the most promising technologies that can convert lignocellulosic biomass to bio-oil. This study focuses on the production and characterization of bio-oil from hardwood and softwood lignin via pyrolysis process using a bench-scale batch reactor. In this study, a mixed solvent extraction method with different polarities was developed to fractionate different components of bio-crude oil into three fractions. The obtained fractions were characterized by using gas chromatography and mass spectrometry (GCMS). The calculated bio-oil yields from Sigma Kraft lignin and Chouka Kraft lignin were about 30.2% and 24.4%, respectively. The organic solvents, e.g., toluene, methanol, and water were evaluated for chemical extraction from bio-oil, and it was found that the efficiency of solvents is as follows: water > methanol > toluene. In both types of the bio-oil samples, phenolic compounds were found to be the most abundant chemical groups which include phenol, 2-methoxy, 2-methoxy-6-methylphenol and phenol, 4-ethyl-2-methoxy that is due to the structure and the originality of lignin, which is composed of phenyl propane units with one or two methoxy groups (O-CH3) on the aromatic ring.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3