Modeling the Dynamic Recrystallization and Flow Curves Using the Kinetics of Static Recrystallization

Author:

Shkatov Valeriy,Mazur IgorORCID

Abstract

The results of modeling the dynamic recrystallization of steels during hot deformation on the basis of information on their static recrystallization kinetics are presented. The results of predicting the amount of deformation accumulated in the metal under the conditions of dynamic recrystallization development were used for calculating the metal flow curves. The model was validated by comparing the calculated flow curves with the experimental flow curves determined on the 1045 steel by means of hot torsion tests carried out from 1000 °C to 1100 °C and at strain rates from 0.1 to 10 s‒1. The difference between the experimental and predicted flow stress values did not exceed 6%. The influence of the chemical element content in low-alloyed steels on the magnitude of the critical strain for the initiation of dynamic recrystallization is assessed. The method of predicting the kinetics of dynamic recrystallization by recalculating the kinetics of static recrystallization to the conditions of continuous growth of the strain degree during metal deformation implemented in the model can be used in designing and optimizing technologies associated with metal hot forming processes.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3