Abstract
Due to their bioinert and reliable tribological performance, cobalt chromium molybdenum (CoCrMo) alloys have been widely used for articular joint implant applications. However, friction and wear issues are still the main reasons for the failure of implants. As a result, the improvement of the tribological properties and biocompatibility of these alloys is still needed. Thus, surface modification is of great interest for implant manufacturers and for clinical applications. In this study, a strategy combining laser surface texturing and chitosan grafting (mussel inspired) was used to improve the tribological and biocompatible behaviors of CoCrMo. The microstructure and chemical composition were investigated by atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. The tribological properties were discussed to determine their synergistic effects. To evaluate their biocompatibility, osteoblast cells were cocultured with the modified surface. The results show that there is a distinct synergistic effect between laser surface texturing and polymer brushes for improving tribological behaviors and biocompatibility. The prepared chitosan brushes on a textured surface are a strong mechanism for reducing friction force. The dimples took part in the hydrodynamic lubrication and acted as the container for replenishing the consumed lubricants. These brushes also promote the formation of a local lubricating film. The wear resistance of the chitosan brushes was immensely improved. Further, the worn process was observed, and the mechanism of destruction was demonstrated. Co-culturing with osteoblast cells showed that the texture and grafting have potential applications in enhancing the differentiation and orientation of osteoblast cells.
Funder
National Natural Science Foundation of China
Postdoctoral Science Foundation of Shaanxi Province
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献