Technical and Economic Analysis of the Supercritical Combined Gas-Steam Cycle

Author:

Jamróz Marcin,Piwowarski MarianORCID,Ziemiański PawełORCID,Pawlak Gabriel

Abstract

Combined cycle power plants are characterized by high efficiency, now exceeding 60%. The record-breaking power plant listed in the Guinness Book of World Records is the Nishi-Nagoya power plant commissioned in March 2018, located in Japan, and reaching the gross efficiency of 63.08%. Research and development centers, energy companies, and scientific institutions are taking various actions to increase this efficiency. Both the gas turbine and the steam turbine of the combined cycle are modified. The main objective of this paper is to improve the gas-steam cycle efficiency and to reach the efficiency that is higher than in the record-breaking Nishi-Nagoya power plant. To do so, a number of numerical calculations were performed for the cycle design similar to the one used in the Nishi-Nagoya power plant. The paper assumes the use of the same gas turbines as in the reference power plant. The process of recovering heat from exhaust gases had to be organized so that the highest capacity and efficiency were achieved. The analyses focused on the selection of parameters and the modification of the cycle design in the steam part area in order to increase overall efficiency. As part of the calculations, the appropriate selection of the most favorable thermodynamic parameters of the steam at the inlet to the high-pressure (HP) part of the turbine (supercritical pressure) allowed the authors to obtain the efficiency and the capacity of 64.45% and about 1.214 GW respectively compared to the reference values of 63.08% and 1.19 GW. The authors believe that efficiency can be improved further. One of the methods to do so is to continue increasing the high-pressure steam temperature because it is the first part of the generator into which exhaust gases enter. The economic analysis revealed that the difference between the annual revenue from the sale of electricity and the annual fuel cost is considerably higher for power plants set to supercritical parameters, reaching approx. USD 14 million per annum. It is proposed that investments in adapting components of the steam part to supercritical parameters may be balanced out by a higher profit.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3