Evaluation of Recent Advanced Soft Computing Techniques for Gully Erosion Susceptibility Mapping: A Comparative Study

Author:

Arabameri AlirezaORCID,Blaschke ThomasORCID,Pradhan BiswajeetORCID,Pourghasemi Hamid RezaORCID,Tiefenbacher John P.ORCID,Bui Dieu Tien

Abstract

Gully erosion is a problem; therefore, it must be predicted using highly accurate predictive models to avoid losses caused by gully development and to guarantee sustainable development. This research investigates the predictive performance of seven multiple-criteria decision-making (MCDM), statistical, and machine learning (ML)-based models and their ensembles for gully erosion susceptibility mapping (GESM). A case study of the Dasjard River watershed, Iran uses a database of 306 gully head cuts and 15 conditioning factors. The database was divided 70:30 to train and verify the models. Their performance was assessed with the area under prediction rate curve (AUPRC), the area under success rate curve (AUSRC), accuracy, and kappa. Results show that slope is key to gully formation. The maximum entropy (ME) ML model has the best performance (AUSRC = 0.947, AUPRC = 0.948, accuracy = 0.849 and kappa = 0.699). The second best is the random forest (RF) model (AUSRC = 0.965, AUPRC = 0.932, accuracy = 0.812 and kappa = 0.624). By contrast, the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) model was the least effective (AUSRC = 0.871, AUPRC = 0.867, accuracy = 0.758 and kappa = 0.516). RF increased the performance of statistical index (SI) and frequency ratio (FR) statistical models. Furthermore, the combination of a generalized linear model (GLM), and functional data analysis (FDA) improved their performances. The results demonstrate that a combination of geographic information systems (GIS) with remote sensing (RS)-based ML models can successfully map gully erosion susceptibility, particularly in low-income and developing regions. This method can aid the analyses and decisions of natural resources managers and local planners to reduce damages by focusing attention and resources on areas prone to the worst and most damaging gully erosion.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3