Evaluating Convolutional Neural Networks for Cage-Free Floor Egg Detection

Author:

Li GuomingORCID,Xu Yan,Zhao YangORCID,Du Qian,Huang Yanbo

Abstract

The manual collection of eggs laid on the floor (or ‘floor eggs’) in cage-free (CF) laying hen housing is strenuous and time-consuming. Using robots for automatic floor egg collection offers a novel solution to reduce labor yet relies on robust egg detection systems. This study sought to develop vision-based floor-egg detectors using three Convolutional Neural Networks (CNNs), i.e., single shot detector (SSD), faster region-based CNN (faster R-CNN), and region-based fully convolutional network (R-FCN), and evaluate their performance on floor egg detection under simulated CF environments. The results show that the SSD detector had the highest precision (99.9 ± 0.1%) and fastest processing speed (125.1 ± 2.7 ms·image−1) but the lowest recall (72.1 ± 7.2%) and accuracy (72.0 ± 7.2%) among the three floor-egg detectors. The R-FCN detector had the slowest processing speed (243.2 ± 1.0 ms·image−1) and the lowest precision (93.3 ± 2.4%). The faster R-CNN detector had the best performance in floor egg detection with the highest recall (98.4 ± 0.4%) and accuracy (98.1 ± 0.3%), and a medium prevision (99.7 ± 0.2%) and image processing speed (201.5 ± 2.3 ms·image−1); thus, the faster R-CNN detector was selected as the optimal model. The faster R-CNN detector performed almost perfectly for floor egg detection under a wide range of simulated CF environments and system settings, except for brown egg detection at 1 lux light intensity. When tested under random settings, the faster R-CNN detector had 91.9–94.7% precision, 99.8–100.0% recall, and 91.9–94.5% accuracy for floor egg detection. It is concluded that a properly-trained CNN floor-egg detector may accurately detect floor eggs under CF housing environments and has the potential to serve as a crucial vision-based component for robotic floor egg collection systems.

Funder

Mississippi Agricultural and Forestry Experiment Station

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3