Geochemical and Isotopic Compositions of Fluorites from the Yama Fluorite Deposit in the Qilian Orogen in Northwest China, and Their Metallogenic Implications

Author:

Jiao He1,Huang Guo-Biao1,Ma Wei1,Cui Qiang-Qiang1,Wang Wei-Hu1,Ding Qing-Feng2ORCID,Zhou Xuan2,Wu Rui-Zhe2

Affiliation:

1. Qinghai Provincial Key Laboratory of Salt Lake Resources Exploration and Research in Qaidam Basin, Qaidam Integrated Geological Exploration Institute of Qinghai Province, Golmud 816099, China

2. College of Earth Sciences, Jilin University, Changchun 130061, China

Abstract

The Yama area is characterized by numerous large-scale fluorite–quartz veins that are located along faults within the widespread Late Devonian–Late Silurian syenogranites in the Tataleng granitic batholith, Qilian Orogen, Northwest China. These fluorite–quartz veins contribute to an important fluorite reserve, but their ore genesis remains unresolved so far. In this study, trace elements, rare earth elements (REEs), and hydrogen, oxygen, and strontium isotopic compositions of fluorites are analyzed. The studied fluorite samples have similar chondrite-normalized REEs, including Y patterns, with relatively strong enrichment in heavy REEs, negative Eu anomalies, strongly positive Y anomalies, and comparably invariable Y/Ho ratios of 41.43–73.79, suggesting a unique hydrothermal genesis. The relatively variable values of δD and δ18O are −77.4‰ to −102.4‰ and −12.7‰ to −4.3‰, respectively, close to the meteoric water line. These fluorites yield relatively invariable analytical 87Sr/86Sr ratios of 0.749089−0.756628 (except for an anomalously high ratio), and their calculated initial 87Sr/86Sr ratios, based on the ore-forming ages provided, are apparently higher than the calculated initial 87Sr/86Sr ratios of syenogranite wall rocks. Collectively, the geochemistry of trace elements, REEs, and stable isotopes (H, O, and Sr) suggests that the ore-forming fluids were of meteoric origin and that the Sr sources were directly derived from the ore-forming fluids themselves rather than syenogranite wall rocks. Finally, it was considered that the Yama fluorite deposit is a fault-controlled hydrothermal vein-type deposit which was possibly related to the evolution of the Paleo-Tethys Ocean in the Permian–Triassic.

Funder

First Group of Geological Survey Project in 2024 from the Bureau of Geological Exploration & Development of Qinghai Province

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3