Occurrence State and Enrichment Mechanism of Rhenium in the Qianjiadian Uranium Deposit in the Southwestern Songliao Basin, Northeast China

Author:

Yang Songlin1,Liu Xingzhou1,Shan Zhibo1,Lei Angui1,Liu Yong1,Wei Da1,Zhu Shijiao1,Fu Yong1,Zhang Long2

Affiliation:

1. Exploration and Development Research Institute, Liaohe Oilfield Branch Company, PetroChina, Panjin 124010, China

2. Shaanxi Key Laboratory of Petroleum Accumulation Geology, School of Earth Sciences and Engineering, Xi’an Shiyou University, Xi’an 710065, China

Abstract

Rhenium is an extremely rare critical metal element in Earth’s continental crust. Owing to its extremely high melting point and heat-stable crystalline structure, rhenium is an essential component of alloy materials used in high-performance aircraft engines. Demand for rhenium resources is therefore growing. Currently, most rhenium is produced as a byproduct of molybdenum mining in porphyry copper–molybdenum deposits. Research has therefore focused on the enrichment characteristics of rhenium in this type of deposit, with little attention paid to rhenium in other types of deposits. This study reports the occurrence state and enrichment mechanism of rhenium in the Qianjiadian sandstone-type uranium deposit in the Songliao Basin, Northeast China. Sequential extraction revealed that the average proportions of different forms of rhenium are as follows: water-soluble (57.86%) > organic-sulfide-bound (13.11%) > residual (12.26%) > Fe/Mn oxide-bound (10.67%) > carbonate-bound (6.10%). Combining mineralogical analysis techniques such as SEM-EDS, EMPA, and XRD, it has been established that rhenium does not occur as a substitute in sulfides (e.g., molybdenite) or uranium minerals in various types of deposits. Instead, it is mainly adsorbed onto clay minerals and Fe-Ti oxides, and in a small number of other minerals (pyrite, organic matter, and pitchblende). Rhenium is similar to redox-sensitive elements such as uranium and vanadium, and it is transported in a water-soluble form by oxidizing groundwater to the redox transition zone for enrichment. However, unlike uranium, which generally forms as uranium minerals, rhenium is mainly adsorbed and enriched onto clay minerals (kaolinite and interlayered illite–smectite). Most of the rhenium in sandstone-type uranium deposits occurs in an ion-adsorption state, and is easily leached and extracted during in-situ leaching mining of uranium ores. This type of deposit demonstrates excellent production potential and will become a crucial recoverable resource for future rhenium supply.

Funder

Scientific Research and Technology Development Project of PetroChina

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3