Abstract
Long noncoding RNA (lncRNA) plays a crucial role in many critical biological processes and participates in complex human diseases through interaction with proteins. Considering that identifying lncRNA–protein interactions through experimental methods is expensive and time-consuming, we propose a novel method based on deep learning that combines raw sequence composition features, hand-designed features and structure features, called LGFC-CNN, to predict lncRNA–protein interactions. The two sequence preprocessing methods and CNN modules (GloCNN and LocCNN) are utilized to extract the raw sequence global and local features. Meanwhile, we select hand-designed features by comparing the predictive effect of different lncRNA and protein features combinations. Furthermore, we obtain the structure features and unifying the dimensions through Fourier transform. In the end, the four types of features are integrated to comprehensively predict the lncRNA–protein interactions. Compared with other state-of-the-art methods on three lncRNA–protein interaction datasets, LGFC-CNN achieves the best performance with an accuracy of 94.14%, on RPI21850; an accuracy of 92.94%, on RPI7317; and an accuracy of 98.19% on RPI1847. The results show that our LGFC-CNN can effectively predict the lncRNA–protein interactions by combining raw sequence composition features, hand-designed features and structure features.
Funder
National Natural Science Foundation of China
Development Project of Jilin Province of China
Subject
Genetics (clinical),Genetics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献