RANK-C Expression Sensitizes ER-Negative, EGFR-Positive Breast Cancer Cells to EGFR-Tyrosine Kinase Inhibitors (TKIs)

Author:

Sirinian Chaido,Papanastasiou Anastasios D.,Degn Soren E.,Frantzi Theodora,Aronis Christos,Chaniotis Dimitrios,Makatsoris Thomas,Koutras Angelos,Kalofonos Haralabos P.

Abstract

Background: We have previously shown that overexpression of RANK-c in ER-negative breast cancer cell lines attenuates aggressive properties of cancer cells, partially through a RANK-c/EGFR interaction. EGFR inhibition through TKIs in breast cancer has been tested in triple-negative disease settings with limited clinical benefit for patients. Here we test if expression of RANK-c in ER-negative breast cancer cells in conjunction with treatment with TK inhibitors (erlotinib or gefitinib) can affect survival and colony-forming capacity of cancer cells. Methods: Stably expressing MDA-MB-231-RANK-c and SKBR3-RANK-c cells were employed to test proliferation and colony formation in the presence of TKIs. In addition, Western blot analysis was performed to dissect EGFR related signaling cascades upon TK inhibition in the presence of RANK-c. Results: Interestingly the two RANK-c expressing, ER-negative cells lines presented with a distinct phenotype concerning TKI sensitivity upon treatment. MDA-MB-231-RANK-c cells had a higher sensitivity upon gefitinib treatment, while erlotinib decreased the proliferation rate of SKBR3-RANK-c cells. Further, colony formation assays for MDA-MB-231-RANK-c cells showed a decrease in the number and size of colonies developed in the presence of erlotinib. In addition, RANK-c seems to alter signaling through EGFR after TKI treatment in a cell type-specific manner. Conclusions: Our results indicate that ER-negative breast cancer cells that express RANK-c alter their sensitivity profile against tyrosine kinase inhibitors (erlotinib and gefitinib) in a cell type-specific and culture substrate-dependent manner.

Funder

State Scholarships Foundation

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3