Rare Pathogenic Variants in Genes Implicated in Glutamatergic Neurotransmission Pathway Segregate with Schizophrenia in Pakistani Families

Author:

Fatima Ambrin,Abdullah UzmaORCID,Farooq Muhammad,Mang Yuan,Mehrjouy Mana M.,Asif Maria,Ali ZafarORCID,Tommerup Niels,Baig Shahid M.

Abstract

Schizophrenia is a disabling neuropsychiatric disorder of adulthood onset with high heritability. Worldwide collaborations have identified an association of ~270 common loci, with small individual effects and hence weak clinical implications. The recent technological feasibility of exome sequencing enables the identification of rare variants of high penetrance that refine previous findings and improve risk assessment and prognosis. We recruited two multiplex Pakistani families, having 11 patients and 19 unaffected individuals in three generations. We performed genome-wide SNP genotyping, next-generation mate pairing and whole-exome sequencing of selected members to unveil genetic components. Candidate variants were screened in unrelated cohorts of 508 cases, 300 controls and fifteen families (with 51 affected and 47 unaffected individuals) of Pakistani origin. The structural impact of substituted residues was assessed through in silico modeling using iTASSER. In one family, we identified a rare novel microduplication (5q14.1_q14.2) encompassing critical genes involved in glutamate signaling, such as CMYA5, HOMER and RasGRF2. The second family segregates two ultra-rare, predicted pathogenic variants in the GRIN2A (NM_001134407.3: c.3505C>T, (p.R1169W) and in the NRG3 NM_001010848.4: c.1951G>A, (p.E651K). These genes encode for parts of AMPA and NMDA receptors of glutamatergic neurotransmission, respectively, and the variants are predicted to compromise protein function by destabilizing their structures. The variants were absent in the aforementioned cohorts. Our findings suggest that rare, highly penetrant variants of genes involved in glutamatergic neurotransmission are contributing to the etiology of schizophrenia in these families. It also highlights that genetic investigations of multiplex, multigenerational families could be a powerful approach to identify rare genetic variants involved in complex disorders.

Funder

European Molecular Biology Organization

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3