Comparison of Minimally Invasive Monitoring Methods and Live Trapping in Mammals

Author:

Miranda Paez Andrea,Sundaram MekalaORCID,Willoughby Janna R.ORCID

Abstract

The conservation and management of wildlife requires the accurate assessment of wildlife population sizes. However, there is a lack of synthesis of research that compares methods used to estimate population size in the wild. Using a meta-analysis approach, we compared the number of detected individuals in a study made using live trapping and less invasive approaches, such as camera trapping and genetic identification. We scanned 668 papers related to these methods and identified data for 44 populations (all focused on mammals) wherein at least two methods (live trapping, camera trapping, genetic identification) were used. We used these data to quantify the difference in number of individuals detected using trapping and less invasive methods using a regression and used the residuals from each regression to evaluate potential drivers of these trends. We found that both trapping and less invasive methods (camera traps and genetic analyses) produced similar estimates overall, but less invasive methods tended to detect more individuals compared to trapping efforts (mean = 3.17 more individuals). We also found that the method by which camera data are analyzed can significantly alter estimates of population size, such that the inclusion of spatial information was related to larger population size estimates. Finally, we compared counts of individuals made using camera traps and genetic data and found that estimates were similar but that genetic approaches identified more individuals on average (mean = 9.07 individuals). Overall, our data suggest that all of the methods used in the studies we reviewed detected similar numbers of individuals. As live trapping can be more costly than less invasive methods and can pose more risk to animal well-fare, we suggest minimally invasive methods are preferable for population monitoring when less-invasive methods can be deployed efficiently.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3