MiR-138-5p Suppresses Cell Growth and Migration in Melanoma by Targeting Telomerase Reverse Transcriptase

Author:

Tarazón EstefaníaORCID,de Unamuno Bustos Blanca,Murria Estal Rosa,Pérez Simó Gema,Sahuquillo Torralba AntonioORCID,Simarro JavierORCID,Palanca Suela SaraiORCID,Botella Estrada Rafael

Abstract

Recent evidence suggests the existence of a miRNA regulatory network involving human telomerase reverse transcriptase gene (hTERT), with miR-138-5p playing a central role in many types of cancers. However, little is known about the regulation of hTERT expression by microRNA (miRNAs) in melanocytic tumors. Here, we investigated the effects of miR-138-5p in hTERT regulation in melanoma cells lines. In vitro studies demonstrated higher miR-138-5p and lower hTERT messenger RNA (mRNA) expression in human epidermal melanocytes, compared with melanoma cell lines (A2058, A375, SK-MEL-28) by quantitative polymerase chain reaction (qPCR) observing a negative correlation between them. A2058 melanoma cells were selected to be transfected with miR-138-5p mimic or inhibitor. Using luciferase assay, hTERT was identified as a direct target of this miRNA. Overexpression of miR-138-5p detected by Western blot revealed a decrease in hTERT protein expression (p = 0.012), and qPCR showed a reduction in telomerase activity (p < 0.001). Moreover, suppressions in cell growth (p = 0.035) and migration abilities (p = 0.015) were observed in A2058-transfected cells using thiazolyl blue tetrazolium bromide and flow cytometry, respectively. This study identifies miR-138-5p as a crucial tumor suppressor miRNA involved in telomerase regulation. Targeting it as a combination therapy with immunotherapy or targeted therapies could be used in advanced melanoma treatment; however, more preclinical studies are necessary.

Funder

Instituto de Salud Carlos III

European Regional Development Found

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3