Durability of a New Thermal Aerogel-Based Rendering System under Distinct Accelerated Aging Conditions

Author:

Maia JoanaORCID,Pedroso MarcoORCID,Ramos Nuno M. M.ORCID,Flores-Colen InêsORCID,Pereira Pedro F.ORCID,Silva Luís

Abstract

The widespread application of innovative thermal enhanced façade solutions requires an adequate durability evaluation. The present work intends to assess the durability of a new aerogel cement-based rendering system through the adaptation of different accelerated aging cycles, such as heating–freezing, freeze–thawing, and heat–cold. Several mechanical properties and also capillary and liquid water absorptions were tested for uncoated and coated specimens. A decrease in the mechanical strength, especially after freeze–thaw cycles, was observed. However, the water action promoted the late hydration of the cement paste contributing to the densification of the matrix and, consequently, the increase of the adhesive strength. Additionally, a decrease in the dynamic modulus of elasticity and an increase in the Poisson’s ratio were observed after aging, which indicates a higher capacity of the render to adapt to substrate movements, contributing to a reduction of cracking.

Funder

Ministério da Ciência, Tecnologia e Ensino Superior

European Commission

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3