Effect of Fiber Shape on the Tribological, Mechanical, and Morphological Behaviors of Sisal Fiber-Reinforced Resin-Based Friction Materials: Helical, Undulated, and Straight Shapes

Author:

Wu SiyangORCID,Zhao Jiale,Guo MingzhuoORCID,Zhuang Jian,Wu Qian

Abstract

In this paper, we aim to evaluate the tribological, mechanical, and morphological performance of resin-based friction composites reinforced by sisal fibers with different shapes, namely helical, undulated, and straight shapes. The experimental results show that the shape of the sisal fibers exerts a significant effect on the impact property of the composite materials but no obvious influence on the density and hardness. The friction composite containing the helical-shaped sisal fibers exhibits the best overall tribological behaviors, with a relatively low fade (9.26%), high recovery (98.65%), and good wear resistance (2.061 × 10−7 cm3∙N−1∙m−1) compared with the other two composites containing undulated-shaped fibers and straight-shaped fibers. The impact fracture surfaces and worn surfaces of the composite materials were inspected by scanning electron microscopy, and we demonstrate that adding helical-shaped sisal fibers into the polymer composites provides an enhanced fiber–matrix interface adhesion condition and reduces the extent of fiber debonding and pullout, effectively facilitating the presence of more secondary plateaus on the friction surface, which are responsible for the enhanced tribological and mechanical properties. The outcome of this study reveals that sisal fibers with a helical shape could be a promising candidate as a reinforcement material for resin-based brake friction composite applications.

Funder

National Key Research and Development Program of China

Natural Science Foundation of China

China Postdoctoral Science Foundation

Science and Technology Development Plan Project of Jilin Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3