Abstract
The fatigue strength and fatigue life of high-strength steels are greatly affected by their surface roughness. This study investigates the underlying mechanisms responsible for fatigue failure of the high-strength steel 42CrMo. Bending fatigue tests of stepped shafts with different levels of surface roughness were conducted to observe the fatigue live reduction affected by surface topography. Besides, the mechanical properties of 42CrMo and its strain–life relationship were established. Moreover, the analytical formulas to describe the stress concentration factor (SCF) and fatigue notch factor (FNF) induced by surface topography were introduced. To estimate the fatigue life of machined specimens with the consideration of surface roughness, the elastic portion of the total strain–life curve of the material was revised with the proposed analytical FNF imposed by surface topography. Comparisons between the estimated fatigue lives and experimentally obtained fatigue lives show that the effect of surface roughness on fatigue lives could be estimated effectively and conveniently by the proposed procedure.
Subject
General Materials Science
Reference41 articles.
1. Metal Fatigue in Engineering;Stephens,2001
2. Fatigue Design: Life Expectancy of Machine Parts;Zahavi,1996
3. Surface finish effect on fatigue behavior of forged steel
4. THE FATIGUE PERFORMANCE OF MACHINED SURFACES
5. Kerbspannungslehre;Neuber,1958
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献