Management of Voltage Flexibility from Inverter-Based Distributed Generation Using Multi-Agent Reinforcement Learning
Author:
Tomin Nikita,Voropai Nikolai,Kurbatsky Victor,Rehtanz Christian
Abstract
The increase in the use of converter-interfaced generators (CIGs) in today’s electrical grids will require these generators both to supply power and participate in voltage control and provision of grid stability. At the same time, new possibilities of secondary QU droop control in power grids with a large proportion of CIGs (PV panels, wind generators, micro-turbines, fuel cells, and others) open new ways for DSO to increase energy flexibility and maximize hosting capacity. This study extends the existing secondary QU droop control models to enhance the efficiency of CIG integration into electrical networks. The paper presents an approach to decentralized control of secondary voltage through converters based on a multi-agent reinforcement learning (MARL) algorithm. A procedure is also proposed for analyzing hosting capacity and voltage flexibility in a power grid in terms of secondary voltage control. The effectiveness of the proposed static MARL control is demonstrated by the example of a modified IEEE 34-bus test feeder containing CIGs. Experiments have shown that the decentralized approach at issue is effective in stabilizing nodal voltage and preventing overcurrent in lines under various heavy load conditions often caused by active power injections from CIGs themselves and power exchange processes within the TSO/DSO market interaction.
Funder
Russian Science Foundation
Russian Foundation for Basic Research
Deutsche Forschungsgemeinschaft
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference40 articles.
1. Flexibility Needs in the Future Power System. ISGAN Annex 6 Power T&D Systemshttps://www.iea-isgan.org/wp-content/uploads/2019/03/ISGAN_DiscussionPaper_Flexibility_Needs_In_Future_Power_Systems_2019.pdf
2. Solutions to Increase PV Hosting Capacity and Provision of Services from Flexible Energy Resources
3. Photovoltaic Hosting Capacity Sensitivity to Active Distribution Network Management
4. Stochastic Analysis to Determine Feeder Hosting Capacity for Distributed Solar PV;Smith,2012
5. Voltage Sensitivity Analysis Based PV Hosting Capacity Evaluation Considering Uncertainties;Dong,2020
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献