Digital Terrain Modelling by Remotely Piloted Aircraft: Optimization and Geometric Uncertainties in Precision Coffee Growing Projects

Author:

Santana Lucas SantosORCID,Ferraz Gabriel Araújo e SilvaORCID,Marin Diego BedinORCID,Faria Rafael de Oliveira,Santana Mozarte Santos,Rossi GiuseppeORCID,Palchetti EnricoORCID

Abstract

The implantation of coffee crop plantations requires cartographic data for dimensioning areas and planning the planting line. Digital terrain models (DTMs) obtained from remotely piloted aircraft (RPA) can contribute to efficient data collection for topography making this technique applicable to precision coffee projects. Aiming to achieve efficiency in the collection, processing and photogrammetric products quality, flight configurations and image processing were evaluated. Two hundred sixty-five points obtained by Global Navigation Satellite System (GNSS) receivers characterized the topographic surface. Then eighteen flight missions were carried out by RPA in the configurations of altitude above ground level (AGL) and frontal and lateral image overlay. In addition, different point cloud formats evaluated the image processing (time) efficiency in DTM. Flights performed at 120 m AGL and 80 × 80% overlap showed higher assertiveness and efficiency in generation DTMs. The 90 m AGL flight showed great terrain detail, causing significant surface differences concerning the topography obtained by GNSS. An increase in image overlap requires longer processing times, not contributing linearly to the geometric quality of orthomosaic. Slope ranges up to 20% are considered reliable for precision coffee growing projects; above 20% overestimates the slope values of the land. Changes in flight settings and image processing are satisfactory for precision coffee projects. Image overlap reduction was significant in reducing the processing time without influencing the quality of the DTMs. In addition, image processing performed in shallow point clouds did not interfere with the DTMs quality.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3