Evaluation of Near-Infrared Reflectance and Transflectance Sensing System for Predicting Manure Nutrients

Author:

Feng XiaoyuORCID,Larson Rebecca A.ORCID,Digman Matthew F.ORCID

Abstract

Livestock manure is widely applied onto agriculture soil to fertilize crops and increase soil fertility. However, it is difficult to provide real-time manure nutrient data based on traditional lab analyses during application. Manure sensing using near-infrared (NIR) spectroscopy is an innovative, rapid, and cost-effective technique for inline analysis of animal manure. This study investigated a NIR sensing system with reflectance and transflectance modes to predict N speciation in dairy cow manure using a spiking method. In this study, 20 dairy cow manure samples were collected and spiked to achieve four levels of ammoniacal nitrogen (NH4-N) and organic nitrogen (Org-N) concentrations that resulted in 100 samples in each spiking group. All samples were scanned and analyzed using a NIR system with reflectance and transflectance sensor configurations. NIR calibration models were developed using partial least square regression analysis for NH4-N, Org-N, total solid (TS), ash, and particle size (PS). Coefficient of determination (R2) and root mean square error (RMSE) were selected to evaluate the models. A transflectance probe with a 1 mm path length had the best performance for analyzing manure constituents among three path lengths. Reflectance mode improved the calibration accuracy for NH4-N and Org-N, whereas transflectance mode improved the model predictability for TS, ash, and PS. Reflectance provided good prediction for NH4-N (R2 = 0.83; RMSE = 0.65 mg mL−1) and approximate predictions for Org-N (R2 = 0.66; RMSE = 1.18 mg mL−1). Transflectance was excellent for TS predictions (R2 = 0.97), and provided good quantitative predictions for ash and approximate predictions for PS. The correlations between the accuracy of NH4-N and Org-N calibration models and other manure parameters were not observed indicating the predictions of N contents were not affected by TS, ash, and PS.

Funder

Dairy Innovation Hub

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3