Neural Network AEROsol Retrieval for Geostationary Satellite (NNAeroG) Based on Temporal, Spatial and Spectral Measurements

Author:

Chen Xingfeng1ORCID,Zhao Limin1,Zheng Fengjie2,Li Jiaguo1,Li Lei3,Ding Haonan1,Zhang Kainan4,Liu Shumin5,Li Donghui1,de Leeuw Gerrit16ORCID

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

2. School of Space Information, Space Engineering University, Beijing 101416, China

3. State Key Laboratory of Severe Weather (LASW), Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China

4. School of Earth Sciences and Resources, Chang’an University, Xi’an 710054, China

5. School of Software, Jiangxi University of Science and Technology, Nanchang 330013, China

6. KNMI (Royal Netherlands Meteorological Institute), 3730AE De Bilt, The Netherlands

Abstract

Geostationary satellites observe the earth surface and atmosphere with a short repeat time, thus, providing aerosol parameters with high temporal resolution, which contributes to the air quality monitoring. Due to the limited information content in satellite data, and the coupling between the signals received from the surface and the atmosphere, the accurate retrieval of multiple aerosol parameters over land is difficult. With the strategy of taking full advantage of satellite measurement information, here we propose a neural network AEROsol retrieval framework for geostationary satellite (NNAeroG), which can potentially be applied to different instruments to obtain various aerosol parameters. NNAeroG was applied to the Advanced Himawari Imager on Himawari-8 and the results were evaluated versus independent ground-based sun photometer reference data. The aerosol optical depth, Ångström exponent and fine mode fraction produced by the NNAeroG method are significantly better than the official JAXA aerosol products. With spectral bands selection, the use of thermal infrared bands is meaningful for aerosol retrieval.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference28 articles.

1. satellite view of aerosols in the climate system;Kaufman;Nature,2002

2. The collection 6 MODIS aerosol products over land and ocean;Levy;Atmos. Meas. Tech.,2013

3. Deep blue retrievals of Asian aerosol properties during ACE-Asia;Hsu;IEEE Trans. Geosci. Remote Sens.,2006

4. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm;Lyapustin;J. Geophys. Res. Atmos.,2011

5. The ADV/ASV AATSR aerosol retrieval algorithm: Current status and presentation of a full-mission AOD data set;Kolmonen;Int. J. Digit. Earth.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3