Treatment of Tide Gauge Time Series and Marine GNSS Measurements for Vertical Land Motion with Relevance to the Implementation of the Baltic Sea Chart Datum 2000

Author:

Varbla SanderORCID,Ågren Jonas,Ellmann Artu,Poutanen MarkkuORCID

Abstract

Tide gauge (TG) time series and GNSS measurements have become standard datasets for various scientific and practical applications. However, the TG and geodetic networks in the Baltic Sea region are deforming due to vertical land motion (VLM), the primary cause of which is the glacial isostatic adjustment. Consequently, a correction for VLM, either obtained from a suitable VLM model or by utilizing space-geodetic techniques, must be applied to ensure compatibility of various data sources. It is common to consider the VLM rate relative to an arbitrary reference epoch, but this also yields that the resulting datasets may not be directly comparable. The common height reference, Baltic Sea Chart Datum 2000 (BSCD2000), has been initiated to facilitate the effective use of GNSS methods for accurate navigation and offshore surveying. The BSCD2000 agrees with the current national height realizations of the Baltic Sea countries. As TGs managed by national authorities are rigorously connected to the national height systems, the TG data can also be used in a common system. Hence, this contribution aims to review the treatment of TG time series for VLM and outline potential error sources for utilizing TG data relative to a common reference. Similar consideration is given for marine GNSS measurements that likewise require VLM correction for some marine applications (such as validating marine geoid models). The described principles are illustrated by analyzing and discussing numerical examples. These include investigations of TG time series and validation of shipborne GNSS determined sea surface heights. The latter employs a high-resolution geoid model and hydrodynamic model-based dynamic topography, which is linked to the height reference using VLM corrected TG data. Validation of the presented VLM corrected marine GNSS measurements yields a 1.7 cm standard deviation and −2.7 cm mean residual. The estimates are 1.9 cm and −10.2 cm, respectively, by neglecting VLM correction. The inclusion of VLM correction thus demonstrates significant improvement toward data consistency. Although the focus is on the Baltic Sea region, the principles described here are also applicable elsewhere.

Funder

Estonian Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3