Long-Term Impacts of COVID-19 Lockdown on the NO2 Concentrations and Urban Thermal Environment: Evidence from the Five Largest Urban Agglomerations in China

Author:

Zhang Ninghui,Ye HaipengORCID,Zheng Ji,Leng XuejingORCID,Meng Dan,Li YuORCID

Abstract

Under the threat of COVID-19, many regions around the world implemented lockdown policies to control the spread of the virus. This restriction on both social and economic activities has improved the quality of the environment in certain aspects. However, most previous studies have only focused on the short-term impact of lockdown policies on the urban environment. The long-term effects of lockdown require a more focused exploration and analysis. Thus, five major urban agglomerations in China were selected as the research area; changes in the numerical and spatial distribution of NO2 concentration and surface temperature during four different lockdown stages in 2019, 2020, and 2021 were investigated to analyze the long-term effects of lockdown policies on the urban environment. The results indicated that the impact of shorter lockdowns was short-term and unsustainable; the NO2 concentrations increased again with the resumption of production. Compared with air pollutants, thermal environmental problems are more complex. The effect of the lockdown policy was not reflected in the decrease in the area proportions of the high- and sub-high-temperature regions but rather in the spatial distribution of the high-temperature area, which was manifested as a fragmentation and dispersion of heat source patches. In addition to the severity of the lockdown, the impact of the lockdown policy was also closely related to the level of development and industrial structure of each city. Among the urban environments of the five agglomerations, the most affected were the Yangtze River Delta and Yangtze River Middle-Reach urban agglomerations, which had the largest decline in NO2 concentrations and the most notable fragmentation of heat source patches.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3