Can GPM IMERG Capture Extreme Precipitation in North China Plain?

Author:

Zhang Dasheng,Yang Mingxiang,Ma Meihong,Tang GuoqiangORCID,Wang Tsechun,Zhao Xun,Ma Suying,Wu JinORCID,Wang Wei

Abstract

Extreme precipitation events (EPE) often cause catastrophic floods accompanied by serious economic losses and casualties. The latest version (V06) of the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM IMERG) provides global satellite precipitation data from 2000 at a higher spatiotemporal resolution with improved quality. It is scientifically and practically important to assess the accuracy of the IMERG V06 in capturing extreme precipitation. This study evaluates the two widely used products of IMERG during 2000–2018, i.e., IMERG late run (IMERG-L) and IMERG final run (IMERG-F), in the densely populated and flood-prone North China Plain. The accuracy of the IMERG V06 is evaluated with ground measurements from rain gauge stations at multiple scales (hourly, daily, and seasonally). A novel target tracking method is introduced to extract three-dimensional (3D) extreme precipitation events, and the near-real-time uncalibrated PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System) and GSMAP (Global Satellite Mapping of Precipitation) satellite data are added to further evaluate IMERG’s performance during extreme precipitation. Finally, for flash flood events induced by extreme rainfall in the Hebei Province from 15 to 23 July 2016, the accuracy of capturing the event with IMERG-F and IMERG-L was verified. Results reveal that IMERG-F is better than IMERG-L at all investigated scales (hourly, daily, and seasonally), but the difference between the two products is less at higher time resolutions. Both products manifest decreased performance when capturing 3D extreme precipitation events, and comparatively, IMERG-F performs better than IMERG-L. IMERG-F exhibits a distinct discontinuity in extreme precipitation thresholds between land and ocean, which is a limitation of IMERG-F not documented in previous studies. Moreover, IMERG-L and IMERG-F are comparable at an hourly scale for some metrics, which is beyond the expectation that IMERG-F is notably better than IMERG-L. This study provides a scientific basis for the performance of satellite precipitation products and contributes to guiding users when applying global precipitation products.

Funder

Key R & D Program of Hebei Province-Key Technology Research, Demonstration of Urban Flood Risk Management in Hebei Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3